**How to show the suqareroot √**

**2**

**numbers on the line :**

**Explanation :**

Actually such numbers are not rational numbers they are irrational numbers.

**Steps to show the number √**

**2**

**on number line :**

- First Draw a number line and place a point ‘A’ at number 1.
- Draw perpendicular line at point A.
- Set the point ‘F’ on perpendicular line at distance ‘0 to 1’. It means 𝒍(OA) = 𝒍(AF)
- Draw Then joined the segment OF.
- With this ∆OAF will be formed. ⎳A = 90
- Now draw an arc from the point ‘O’ and radius OF.
- Observe the intersect point ‘Q’ on the line. ∴ 𝒍(OF) = 𝒍(OQ) = √

^{0}, 𝒍(OA) = 𝒍(AF) = 1 (unit)

By Pythagoras theorem,

𝒍(OF)

^{2}= 𝒍(OA)

^{2}+ 𝒍(AF)

^{2}

𝒍(OF)

^{2}= 1

^{2}+ 1

^{2}

𝒍(OF)

^{2}= 1 + 1

𝒍(OF)

^{2}= 2

𝒍(OF) = √

**Practice Set 1.4**

**(1)**The number √2 is shown on a number line. Steps are given to show √2 on the number line using √2. Fill in the boxes properly and complete the activity.

**Ans : **The point Q on the number line shows the number √2.

**संज्ञा : किसीभी व्यक्ति, वस्तु, पक्षियों, जानवरों, स्थान….Read more…**

**(3*)** Show the number √7 on the number line.

**Explanation for √5**

by Pythagoras theorem,

𝒍(OP)^{2} = 𝒍(OA)^{2} + 𝒍(AP)^{2}

𝒍(OP)^{2} = 2^{2} + 1^{2}

𝒍(OP)^{2} = 4 + 1

𝒍(OP)^{2} = 5

𝒍(OP) = √5…(..taken square root of both sides)

∴ 𝒍(OP) = 𝒍(OB) = √5 unit.

**Explanation for √7**

by Pythagoras theorem,

𝒍(OR)^{2} = 𝒍(OC)^{2} + 𝒍(CR)^{2}

𝒍(OR)^{2} = √6^{2} + 1^{2}

𝒍(OR)^{2} = 6 + 1

𝒍(OR)^{2} = 7

𝒍(OR) = √7 …(..taken square root of both sides)

∴ 𝒍(OR) = 𝒍(OD) = √7 unit.

**Nouns : The name given to a people, objects, birds….Read more…**..

**Examples for practice :**

**Lesson No.1**

➦ Practice Set 1.1

➥ Practice Set 1.2

➦ Practice Set 1.3

**इतर लिंक्स :**

➥ मराठी रंग :

➦ विशेषण व विशेषणाचे प्रकार

➥ सर्वनामाचे प्रकार